Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203772

RESUMO

Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.


Assuntos
Alcenos , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Prótons , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X , Acrilatos
2.
Membranes (Basel) ; 13(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37505013

RESUMO

Phosphate recovery from different second streams using electrodialysis (ED) is a promising step to a nutrients circular economy. However, the relatively low ED performance hinders the widespread adoption of this environmentally sound method. The formation of "bonded species" between phosphates and the weakly basic fixed groups (primary and secondary amines) of the anion exchange membrane can be the cause of decrease in current efficiency and increase in energy consumption. ED processing of NaxH(3-x)PO4 alkaline solutions and the use of intense current modes promote the formation of a bipolar junction from negatively charged bound species and positively charged fixed groups. This phenomenon causes a change in the shape of current-voltage curves, increase in resistance, and an enhancement in proton generation during long-term operation of anion-exchange membrane with weakly basic fixed groups. Shielding of primary and secondary amines with a modifier containing quaternary ammonium bases significantly improves ED performance in the recovery of phosphates from NaxH(3-x)PO4 solution with pH 4.5. Indeed, in the limiting and underlimiting current modes, 40% of phosphates are recovered 1.3 times faster, and energy consumption is reduced by 1.9 times in the case of the modified membrane compared to the pristine one. Studies were performed using a new commercial anion exchange membrane CJMA-2.

3.
Membranes (Basel) ; 13(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233516

RESUMO

The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.

4.
Membranes (Basel) ; 13(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233570

RESUMO

New processes for recycling valuable materials from used lithium-ion batteries (LIBs) need to be developed. This is critical to both meeting growing global demand and mitigating the electronic waste crisis. In contrast to the use of reagent-based processes, this work shows the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Li+ and Co2+ ions. Separation is carried out using a track-etched membrane with a pore diameter of 35 nm, which can create conditions for separation if an electric field and an oppositely directed pressure field are applied simultaneously. It is shown that the efficiency of ion separation for a lithium/cobalt pair can be very high due to the possibility of directing the fluxes of separated ions to opposite sides. The flux of lithium through the membrane is about 0.3 mol/(m2 × h). The presence of coexisting nickel ions in the feed solution does not affect the flux of lithium. It is shown that the EBM separation conditions can be chosen so that only lithium is extracted from the feed solution, while cobalt and nickel remain in it.

5.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175918

RESUMO

This book is a collection of papers published in the 3rd and 4th Special Issues of the International Journal of Molecular Sciences under the standard title, "Ion and Molecule Transport in Membrane Systems" [...].


Assuntos
Publicações , Transporte Biológico
6.
Polymers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242863

RESUMO

Innovative ion exchange membranes have become commercially available in recent years. However, information about their structural and transport characteristics is often extremely insufficient. To address this issue, homogeneous anion exchange membranes with the trade names ASE, CJMA-3 and CJMA-6 have been investigated in NaxH(3-x)PO4 solutions with pH 4.4 ± 0.1, 6.6 and 10.0 ± 0.2, as well as NaCl solutions with pH 5.5 ± 0.1. Using IR spectroscopy and processing the concentration dependences of the electrical conductivity of these membranes in NaCl solutions, it was shown that ASE has a highly cross-linked aromatic matrix and mainly contains quaternary ammonium groups. Other membranes have a less cross-linked aliphatic matrix based on polyvinylidene fluoride (CJMA-3) or polyolefin (CJMA-6) and contain quaternary amines (CJMA-3) or a mixture of strongly basic (quaternary) and weakly basic (secondary) amines (CJMA-6). As expected, in dilute solutions of NaCl, the conductivity of membranes increases with an increase in their ion-exchange capacity: CJMA-6 < CJMA-3 << ASE. Weakly basic amines appear to form bound species with proton-containing phosphoric acid anions. This phenomenon causes a decrease in the electrical conductivity of CJMA-6 membranes compared to other studied membranes in phosphate-containing solutions. In addition, the formation of the neutral and negatively charged bound species suppresses the generation of protons by the "acid dissociation" mechanism. Moreover, when the membrane is operated in overlimiting current modes and/or in alkaline solutions, a bipolar junction is formed at the CJMA- 6/depleted solution interface. The CJMA-6 current-voltage curve becomes similar to the well-known curves for bipolar membranes, and water splitting intensifies in underlimiting and overlimiting modes. As a result, energy consumption for electrodialysis recovery of phosphates from aqueous solutions almost doubles when using the CJMA-6 membrane compared to the CJMA-3 membrane.

7.
Membranes (Basel) ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676891

RESUMO

The application of electrodialysis for tartrate stabilization and reagent-free acidity correction of wine and juices is attracting increasing interest. New aliphatic membranes CJMC-3 and CJMA-3 and aromatic membranes CSE and ASE were tested to determine their suitability for use in these electrodialysis processes and to evaluate the fouling of these membranes by wine components for a short (6-8 h) operating time. Using IR spectroscopy, optical indication and measurement of surface contact angles, the chemical composition of the studied membranes, as well as some details about their fouling by wine components, was clarified. The current-voltage charsacteristics, conductivity and water-splitting capacity of the membranes before and after electrodialysis were analyzed. We found that in the case of cation-exchange membranes, complexes of anthocyanins with metal ions penetrate into the bulk (CJMC-3) or are localized on the surface (CSE), depending on the degree of crosslinking of the polymer matrix. Adsorption of wine components by the surface of anion-exchange membranes CJMA-3 and ASE causes an increase in water splitting. Despite fouling under identical conditions of electrodialysis, membrane pair CJMC-3 and CJMA-3 provided 18 ± 1 tartrate recovery with 31 · 10-3 energy consumption, whereas CSE and ASE provided 20 ± 1% tartrate recovery with an energy consumption of 28 · 10-3 Wh, in addition to reducing the conductivity of wine by 20 ± 1%. The casting of aliphatic polyelectrolyte films on the surface of aromatic membranes reduces fouling with a relatively small increase in energy consumption and approximately the same degree of tartrate recovery compared to pristine CSE and ASE.

8.
Membranes (Basel) ; 13(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676909

RESUMO

In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.

9.
Membranes (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557094

RESUMO

Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.

10.
Membranes (Basel) ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557191

RESUMO

The microheterogeneous model makes it possible to describe the main transport properties of ion-exchange membranes using a single set of input parameters. This paper describes an adaptation of the microheterogeneous model for describing the electrical conductivity and diffusion permeability of a track-etched membrane (TEM). Usually, the transport parameters of TEMs are evaluated assuming that ion transfer occurs through the solution filling the membrane pores, which are cylindrical and oriented normally to the membrane surface. The version of the microheterogeneous model developed in this paper takes into account the presence of a loose layer, which forms as an intermediate layer between the pore solution and the membrane bulk material during track etching. It is assumed that this layer can be considered as a "gel phase" in the framework of the microheterogeneous model due to the fixed hydroxyl and carboxyl groups, which imparts ion exchange properties to the loose layer. The qualitative and quantitative agreement between the calculated and experimental concentration dependencies of the conductivity and diffusion permeability is discussed. The role of the model input parameters is described in relation to the structural features of the membrane. In particular, the inclination of the pores relative to the surface and their narrowing in the middle part of the membrane can be important for their properties.

11.
Polymers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501567

RESUMO

Electrodialysis with layer-by-layer coated membranes is a promising method for the separation of monovalent and polyvalent ions. Since the separation selectivity is significantly reduced in the presence of defects in the multilayer system, the stability of the modifiers becomes an important issue. This article reports the i-V curves of layer-by-layer coated membranes based on the heterogeneous MK-40 membrane before and after 50 h long electrodialysis of a solution containing sodium and calcium ions at an underlimiting current density, and the values of concentrations of cations in the desalination chamber during electrodialysis. It is shown that the transport of bivalent ions through the modified membranes is reduced throughout the electrodialysis by about 50%, but the operation results in decreased resistance of the membrane modified with polyethylenimine, which may suggest damage to the modifying layer. Even after electrodialysis, the modified membrane demonstrated experimental limiting current densities higher than that of the substrate, and in case of the membrane modified with polyallylamine, the limiting current density 10% higher than that of the substrate membrane.

12.
Membranes (Basel) ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363662

RESUMO

A comparative analysis of mass transfer characteristics and energy consumption was carried out for the electrodialysis recovery of PV from of NaH2PO4 solutions and multicomponent (0.045 M NaxH(3-x)PO4, 0.02 M KCl, 0.045 M KOH, 0.028 M CaCl2, and 0.012 M MgCl2, pH 6.0 ± 0.1) solution in conventional continuous current (CC) and pulsed electric field (PEF) modes. The advantages of using PEF in comparison with CC mode are shown to increase the current efficiency and reduce energy consumption, as well as reduce scaling on heterogeneous anion-exchange membranes. It has been shown that PEF contributes to the suppression of the "acid dissociation" phenomenon, which is specific for anion-exchange membranes in phosphate-containing solutions. Pulse and pause lapse 0.1 s-0.1 s and duty cycle 1/2 were found to be optimal among the studied PEF parameters.

13.
Membranes (Basel) ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36005679

RESUMO

The contact angle between a membrane surface and a waterdrop lying on its surface provides important information about the hydrophilicity/hydrophobicity of the membrane. This method is well-developed for solid non-swelling materials. However, ion-exchange membranes (IEMs) are gel-like solids that swell in liquids. When an IEM is exposed to air, its degree of swelling changes rapidly, making it difficult to measure the contact angle. In this paper, we examine the known experience of measuring contact angles and suggest a simple equipment that allows the membrane to remain swollen during measurements. An optimized protocol makes it possible to obtain reliable and reproducible results. Measuring parameters such as drop size, water dosing speed and others are optimized. Contact angle measurements are shown for a large number of commercial membranes. These data are supplemented with values from other surface characteristics from optical and profilometric measurements.

14.
Membranes (Basel) ; 12(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35629823

RESUMO

The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ - NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the "bottlenecks" of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ - NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.

15.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563102

RESUMO

Modification of an ion-exchange membrane with a thin layer, the charge of which is opposite to the charge of the substrate membrane, has proven to be an effective approach to obtaining a composite membrane with permselectivity towards monovalent ions. However, the mechanism of permselectivity is not clear enough. We report a 1D model based on the Nernst-Planck-Poisson equation system. Unlike other similar models, we introduce activity coefficients, which change when passing from one layer of the membrane to another. This makes it possible to accurately take into account the fact that the substrate membranes usually selectively sorb multiply charged counterions. We show that the main cause for the change in the permselectivity coefficient, P1/2, with increasing current density, j, is the change in the membrane/solution layer, which controls the fluxes of the competing mono- and divalent ions. At low current densities, counterion fluxes are controlled by transfer through the substrate membrane, which causes selective divalent ion transfer. When the current increases, the kinetic control goes first to the modification layer (which leads to the predominant transfer of monovalent ions) and then, at currents close to the limiting current, to the depleted diffusion layer (which results in a complete loss of the permselectivity). Thus, the dependence P1/2 - j passes through a maximum. An analytical solution is obtained for approximate assessment of the maximum value of P1/2 and the corresponding fluxes of the competing ions. The maximum P1/2 values, plotted as a function of the Na+ ion current density at which this maximum is reached, gives the theoretical trade-off curve between the membrane permselectivity and permeability of the bilayer monovalent selective ion-exchange membrane under consideration.


Assuntos
Membranas Artificiais , Difusão , Troca Iônica , Íons , Membranas
16.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628589

RESUMO

It is known that ammonium has a higher permeability through anion exchange and bipolar membranes compared to K+ cation that has the same mobility in water. However, the mechanism of this high permeability is not clear enough. In this study, we develop a mathematical model based on the Nernst−Planck and Poisson's equations for the diffusion of ammonium chloride through an anion-exchange membrane; proton-exchange reactions between ammonium, water and ammonia are taken into account. It is assumed that ammonium, chloride and OH− ions can only pass through membrane hydrophilic pores, while ammonia can also dissolve in membrane matrix fragments not containing water and diffuse through these fragments. It is found that due to the Donnan exclusion of H+ ions as coions, the pH in the membrane internal solution increases when approaching the membrane side facing distilled water. Consequently, there is a change in the principal nitrogen-atom carrier in the membrane: in the part close to the side facing the feed NH4Cl solution (pH < 8.8), it is the NH4+ cation, and in the part close to distilled water, NH3 molecules. The concentration of NH4+ reaches almost zero at a point close to the middle of the membrane cross-section, which approximately halves the effective thickness of the diffusion layer for the transport of this ion. When NH3 takes over the nitrogen transport, it only needs to pass through the other half of the membrane. Leaving the membrane, it captures an H+ ion from water, and the released OH− moves towards the membrane side facing the feed solution to meet the NH4+ ions. The comparison of the simulation with experiment shows a satisfactory agreement.


Assuntos
Amônia , Compostos de Amônio , Cloreto de Amônio , Ânions , Cloretos , Nitrogênio , Permeabilidade , Água
17.
Membranes (Basel) ; 12(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35207114

RESUMO

A one-dimensional non-stationary model was developed for a better understanding of the protein fouling formation mechanism during electroacidification of caseinate solution using electrodialysis with bipolar membranes (EDBM) in pulsed electric field (PEF) mode. Four different PEF modes were investigated with pulse-pause durations of 10-10 s, 10-20 s, 10-33 s, 10-50 s. For each current mode 3 different flow rates were considered, corresponding to Reynolds numbers, Re, equal to 187, 374 and 560. The processes are considered in the diffusion boundary layer between the surface of the cation-exchange layer of bipolar membrane and bulk solution of the desalination compartment. The Nernst-Planck and material balance equation systems describe the ion transport. The electroneutrality condition and equilibrium chemical reactions are taken into account. The calculation results using the developed model are in qualitative agreement with the experimental data obtained during the previous experimental part of the study. It is confirmed that both the electrical PEF mode and the flow rate have a significant effect on the thickness (and mass) of the protein fouling during EDBM. Moreover, the choice of the electric current mode has the main impact on the fouling formation rate; an increase in the PEF pause duration leads to a decrease in the amount of fouling. It was shown that an increase in the PEF pause duration from 10 s to 50 s, in combination with an increase in Reynolds number (the flow rate) from 187 to 560, makes it possible to reduce synergistically the mass of protein deposits from 6 to 1.3 mg/cm2, which corresponds to a 78% decrease.

18.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216352

RESUMO

In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material "clogs" the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.


Assuntos
Ânions/química , Polímeros/química , Troca Iônica , Membranas Artificiais , Modelos Teóricos , Sódio/química
19.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613476

RESUMO

Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.


Assuntos
Membranas Artificiais , Prótons , Íons/química , Transporte Biológico , Troca Iônica
20.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948329

RESUMO

Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.


Assuntos
Ácidos/química , Ânions/química , Membranas/química , Sais/química , Técnicas Eletroquímicas/métodos , Troca Iônica , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...